Effects of coffee on the brain

Astrid Nehlig, Dr.Sc.,
INSERM U 405, Strasbourg, France

History of coffee
Description of the properties of coffee

• Coffee was first consumed as a "medical nutrient" because of its stimulatory effects on digestion...
• In the 11th century, the virtues of caffeine were described by Avicenna
• Prosper Alpin, an Italian botanist and medical doctor studied coffee during a trip to Egypt in 1580
• The first citations of coffee are from Antoine de Jussieu in 1713 and Carl von Linné in 1753
• The Encyclopedia by Diderot and d’Alembert (1751-1772) describes the virtues of coffee in "obesity and migraine"

Caffeine, the main psychoactive component of coffee

• Caffeine
 - isolated from coffee beans in 1820
 - the psychoactive substance most widely consumed throughout the world
 - coffee, tea, mate, sodas; chocolate products; cola nuts; analgesic and sliming medications, and in stimulants
• World consumption of caffeine
 - adults: mean world consumption: 1-2 mg/kg/d (1-2 cups); 2.4-4.0 mg/kg/j in the USA (2-4 cups) and the UK and up to 7.0 mg/kg/j in Scandinavia (7 cups)
 - children: 1.0 mg/kg/j in the USA and 1.8 mg/kg/j in Danemark

Concentrations of caffeine in coffee

• Content on caffeine in a cup of coffee (150 ml)
 - Arabica: 50-120 mg
 - Robusta: 100-250 mg
 - Filtered coffee: 50-175 mg
 - Espresso: 40-110 mg
 - Soluble coffee: 35-110 mg
 - Decaffeinated coffee: 1-6 mg
• Low to moderate consumption: 1-3 cups/day
• High consumption: over 5 cups/day

Effects of coffee and caffeine

• Low to moderate consumption (50-250 mg in one sitting = 1 small cup to two large cups of coffee)
 - positive effects: feeling of well-being, relaxation, positive mood, energy, increased alertness, higher capacity of concentration
• High to very high doses (400-800 mg in one sitting = 5 to 10 large cups of coffee)
 - negative effects: nervousness, anxiety, aggressiveness, insomnia, tachycardia, trembling
• Moderate consumption of coffee and caffeine is not considered to be a health concern

Mechanism of action of caffeine in the brain

• At the doses reached after the ingestion of one or several cups of coffee
 - main effects by binding to adenosine receptors, mainly A1 and A2a subtypes
• Adenosine acts as a neuromodulator
 - by limiting or inhibiting the release of most excitatory neurotransmitters
• Distribution of adenosine receptors
 - A1: in all cerebral regions
 - A2a: mainly in the striatum
Mechanism of action of caffeine in the brain

Adenosine → Inhibition of the release of excitatory neurotransmitters

Caffeine → Activation of the release of excitatory neurotransmitters

Effects of caffeine on the brain:

- Locomotion
 - The effects of caffeine on locomotion have been known for quite a long time
 - Biphasic effects
 - Low to moderate doses: stimulation of motor activity
 - High doses: reduction of motor activity
 - In the rat, activation at a low dose: 1 mg/kg (1 cup of coffee) increases functional and electrophysiological activity in the striatum, cerebral area mediating locomotion

Sagittal section of the rat brain

Caffeine and locomotion

Effects of caffeine on the brain:

- Sleep
 - Sleep is one of the functions most sensitive to the effects of coffee and caffeine. These effects reflect the blockade of the hypnotic properties of adenosine by caffeine
 - In humans, 100 mg of caffeine (one cup of coffee) at bedtime:
 - Increases the latency to sleep and decreases the quality of sleep, mainly the phases of deep sleep, but has no effect on REM sleep
 - The effect is persisting for about 3-4 h, sometimes longer
 - In the rat, a low dose of 1 mg/kg caffeine (one cup of coffee) increases functional activity in brain regions mediating the sleep-wake cycle
Effects of caffeine on the brain:
Alertness, mood and performance

- Low doses of caffeine (20-200 mg in one sitting) have positive effects on mood, vigilance and energy
 - improvement of self-confidence, concentration abilities and efficacy in intellectual tasks
 - effects mostly marked in situations with reduced vigilance: after lunch, regular cold...
- Effects of caffeine on memory and performance appear to be rather indirect effects:
 - on vigilance, concentration, information processing and reduction of fatigability

Effects of caffeine on the brain:
Headache and migraine

- Pain during headache and migraine is partly resulting from the vasodilation of cerebral blood vessels induced by A2 adenosine receptors located on blood vessels
 - Caffeine contained in coffee
 - reduces pain during headache and migraine via its vasoconstrictive properties
 - Caffeine alone
 - is present in analgesic preparations
 - is able to potentiate the analgesic properties of some drugs (aspirin, ibuprofen) by a mechanism not yet clarified

Effects of coffee and caffeine on brain: Anxiety

- Caffeine may generate anxiety
 - only at doses much larger than the regular doses in the normal population
 - at low doses in a subset of sensitive individuals

This leads some sensitive individuals to a spontaneous reduction of coffee consumption
Effects of coffee and caffeine on brain diseases: Parkinson’s disease (1)

- Parkinson’s disease (PD) is the result of the degeneration of dopaminergic cell bodies in the substantia nigra which connects to the striatum
 - Treatment by an analogue of dopamine, L-dopa which loses its efficacy in the long term, leading to the aggravation of trembling and difficulties to walk
 - Since the molecular target of caffeine at low doses is located in the striatum, caffeine has been suggested as an adjunctive drug to L-dopa therapy; caffeine leads to an improvement of trembling

- Mayo Clinic study: Coffee consumers reduce their risk to develop PD by a factor of about 2 compared to non-consumers

- Study performed over 30 years on 8,000 Japanese-American men in Hawaii:
 - the more the subjects consume coffee, the lower the incidence of PD. Those who consume 3-4 cups/day have a 5-fold lower risk than non-consumers to develop PD

- Mechanism is unknown
 - aversion for coffee long the development of the disease?
 - Protective effect of caffeine against dopamine depletion?

Effects of coffee and caffeine on brain diseases: Parkinson’s disease (2)

- In women
 - the risk of PD is similar when using hormones or not
 - use of hormones associated with a 34% lower risk with low coffee consumption (less than half a cup/day)
 - use of hormones associated with a 55% higher risk with high coffee consumption (over 5 cups/day)
 - caffeine-estrogen interaction is postulated

- In the elderly population
 - no association between signs of PD and coffee consumption

- Stroke
 - Potential "neuroprotective" effects of chronic coffee consumption: postulated in humans, demonstrated in stroke models in rodents

- Epilepsy
 - in rodents: chronic treatment by caffeine in drinking water decreases the susceptibility to seizures and is neuroprotective
 - chronic treatment could reduce cerebral excitability (mechanism not yet clarified)

Effects of coffee and caffeine on brain diseases: Stroke and epilepsy

- Stroke
 - Potential "neuroprotective" effects of chronic coffee consumption: postulated in humans, demonstrated in stroke models in rodents

- Epilepsy
 - in rodents: chronic treatment by caffeine in drinking water decreases the susceptibility to seizures and is neuroprotective
 - chronic treatment could reduce cerebral excitability (mechanism not yet clarified)

Are we dependent on coffee and caffeine? (1)

- Caffeine most often in coffee is consumed daily by most individuals: some of them pretend they cannot cut of or stop drinking coffee

- Arguments for a dependence?
 - The abrupt cessation of caffeine consumption can lead to a withdrawal syndrome: headache, feeling of weakness and nervousness
 - These symptoms are only found in some individuals, they are light to moderate and last for only about 24-48 h
 - These symptoms are more comparable to those induced by hard drugs (cocaine, amphetamine, morphine or nicotine)

- Arguments against a dependence?
 - There is no tolerance to the central effects of caffeine

- Characteristics of drugs of dependence (cocaine, amphetamine, morphine, nicotine)
 - specific increase of functional activity in the shell of the nucleus accumbens (NA)
 - induction of the release of dopamine in the shell of the NA

- These two effects are specific and occur at low doses of these drugs; these properties reflect their high addictive potential
Sagittal section of the rat brain

Caffeine and dependence

- Conversely to hard drugs, the activation of the shell of the NA by caffeine only occurs at high doses
 - at 10 mg/kg (8-10 cups of coffee in one sitting) and this non specific effect occurs simultaneously to the activation of numerous brain regions
 - these generalized increases in functional activity most likely reflect the negative and aversive effects of the ingestion of high doses of caffeine
- Caffeine does not induce any release of dopamine in the shell of the NA (0.5-5 mg/kg)

Are we dependent on coffee and caffeine? (3)

- Composition of coffee is very complex
 - in addition to caffeine, coffee contains: proteins, minerals, vitamins and a multitude of other compounds
- Phenolic compounds
 - chlorogenic acids: antioxidant properties and cellular detoxification in vitro and in vivo (ongoing research)
- Diterpenes
 - kawheol and cafestol: antioxidant properties and cellular detoxification in vitro and in vivo (ongoing research)

Properties of other constituents of coffee

Conclusions

- Coffee and caffeine
 - stimulate locomotion and disturb sleep
 - ameliorate mood and performances
 - act on headaches and are able to potentiate the effects of analgesic medications
 - do not activate the circuits of dependence

Moderate consumption of coffee and caffeine

- has beneficial effects
- can contribute to a healthy and balanced daily diet